第3单元 圆柱与圆锥 1.圆柱 第6课时 解决问题 【教学目标】 1、通过观察比较,掌握不规则物体的体积的计算方法。 2、培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。 【教学重难点】 重点:通过观察比较,掌握不规则物体的体积的计算方法。 难点:培养利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。 【教学过程】 一、问题引入 1、提出问题 师:在学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们还记得是怎样解决的吗? 2、揭示课题:解决问题 二、探究新知 1、教学例7 (1)读题,理解题意: 条件:瓶子内直径是8厘米,瓶内水高7厘米,瓶子倒置后无水部分的高18厘米的圆柱。 问题:这个瓶子的容积是多少? (2)质疑。 这个瓶子是圆柱吗?怎样求出它的容积? (3)实物演示。 用两个相同的酒瓶,内装同样多的水进行演示。 (4)尝试解决。 3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18) =1256(cm3) =1256(ml) 答:这个瓶子的容积是1256ml。 2、引导归纳。 3、求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。 三、巩固练习 1、完成教材第27页的“做一做”习题。 2、完成练习五的第3题。 【教学反思】 在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式, 从而理解圆柱的底面积与长方体 底面积相等。这样有利于培养学生应用已有知识解决新问题的能力, 发展空间观念和初步的推理能力。 |
【免责声明】本站所有文字、图片、视频、音频等资料均来自互联网,版权归原作者所有,仅供个人学习研究,本站亦不为其版权负责。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如转载内容涉及版权等问题,请联系我们删除。