第3单元 圆柱与圆锥 2.圆锥 第2课时 圆锥的体积 【教学目标】 1、通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式。 2、能熟练运用公式正确地计算圆锥的体积,并能解决实际生活中有关圆锥体积计算的简单问题。 3、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。 【教学重难点】 重点:理解圆锥体积公式的推导过程。 难点:熟练运用圆锥体积公式解决实际问题。 【教学过程】 一、复习引入 1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点) 2、圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积=底面积×高”。 二、新知探究 1、教学圆锥体积的计算公式。 (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。 (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式) (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?” (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满? (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。) (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的三分之一。) 板书: 2、教学练习六第3题 (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算? (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。 3、巩固练习:完成练习六第4题。 4、教学例3。 (1)出示题目:已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的体积。 (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高) (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积) (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第34页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确) 三、巩固练习 1、做练习六的第7题。 学生先独立判断这三句话是否正确,然后全班核对评讲。 2、做练习六的第8题。 (1)引导学生思考回答以下问题: ①这道题已知什么?求什么? ②求圆锥的体积必须知道什么? ③求出这堆煤的体积后,应该怎样计算这堆煤的重量? (2)让学生做在练习本上,教师巡视,做完后集体订正。 3、做练习六的第6题。 (1)指名学生先后回答下面问题: ①圆柱的侧面积等于多少? ②圆柱的表面积的含义是什么?怎样计算? ③圆柱体积的计算公式是什么? ④圆锥的体积公式是什么? (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。 四、总结 这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的? 【教学反思】 在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法, 不断加深学生对形体的认识。然后要学生用自己的学具自己动手做实验, 从实验的过程中得出结论: 等底等高的圆锥体体积 是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一 种水到渠成的感觉。然后, 利用公式解决生活中的实际问题,加深学生印象。新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发 学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥 的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。 |
【免责声明】本站所有文字、图片、视频、音频等资料均来自互联网,版权归原作者所有,仅供个人学习研究,本站亦不为其版权负责。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如转载内容涉及版权等问题,请联系我们删除。